Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Pt}-\mathrm{N}(1)$	$1.998(5)$	$\mathrm{C}(3)-\mathrm{N}(7)$	$1.475(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.555(6)$
$\mathrm{Pt}-\mathrm{N}(7)$	$2.019(4)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.532(10)$	$\mathrm{C}(11)-\mathrm{C}(14)$	$1.591(6)$
$\mathrm{Pt}-\mathrm{O}(8)$	$2.030(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.501(10)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.560(10)$
$\mathrm{Pt}-\mathrm{O}(17)$	$1.998(4)$	$\mathrm{C}(6)-\mathrm{N}(7)$	$1.492(8)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.529(10)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.486(8)$	$\mathrm{O}(8)-\mathrm{C}(9)$	$1.318(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.546(10)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.512(8)$	$\mathrm{C}(9)-\mathrm{O}(10)$	$1.224(6)$	$\mathrm{O}(15)-\mathrm{C}(16)$	$1.255(7)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.535(9)$	$\mathrm{C}(9)-\mathrm{C}(11)$	$1.482(9)$	$\mathrm{C}(16)-\mathrm{O}(17)$	$1.258(7)$
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{N}(7)$	$84.4(2)$	$\mathrm{O}(8)-\mathrm{C}(9)-\mathrm{C}(11)$	$118.4(4)$		
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{O}(8)$	$175.7(2)$	$\mathrm{O}(10)-\mathrm{C}(9)-\mathrm{C}(11)$	$123.6(4)$		
$\mathrm{N}(1)-\mathrm{Pt}-\mathrm{O}(17)$	$92.1(2)$	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	$110.3(5)$		
$\mathrm{N}(7)-\mathrm{Pt}-\mathrm{O}(8)$	$92.6(2)$	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(14)$	$110.0(6)$		
$\mathrm{N}(7)-\mathrm{Pt}-\mathrm{O}(17)$	$176.3(2)$	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(16)$	$113.7(4)$		
$\mathrm{O}(8)-\mathrm{P}-\mathrm{O}(17)$	$90.9(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)$	$88.5(3)$		
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.1(5)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$118.0(5)$		
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$115.7(5)$	$\mathrm{C}(14)-\mathrm{C}(11)-\mathrm{C}(16)$	$113.7(6)$		
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(7)$	$107.6(4)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$89.4(4)$		
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(7)$	$103.4(5)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$91.1(5)$		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$106.7(5)$	$\mathrm{C}(11)-\mathrm{C}(14)-\mathrm{C}(13)$	$87.5(5)$		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$102.9(6)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{O}(15)$	$116.7(5)$		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(7)$	$101.5(5)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{O}(17)$	$121.1(5)$		
$\mathrm{C}(3)-\mathrm{N}(7)-\mathrm{C}(6)$	$106.7(4)$	$\mathrm{O}(15)-\mathrm{C}(16)-\mathrm{O}(17)$	$122.1(5)$		
$\mathrm{O}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	$117.9(5)$				

$\left.-\left|F_{c}\right|\right)^{2}$ minimized; $w=1 \cdot 0$ for $\left|F_{o}\right|<119 \cdot 26, w=$ $\left(119 \cdot 26 / F_{o}\right)^{2}$ for $\left|F_{o}\right| \geq 119 \cdot 26$. Final $R=0 \cdot 020, w R$ $=0.021, S=1.88$ for 245 variables, secondaryextinction factor (g) $9 \cdot 8(1) \times 10^{-7}\left[\left|F_{o}\right|=\left|F_{c}\right| /(1+\right.$ $\left.g I_{c}\right)$] $\Delta / \sigma<0.48$ for non-H atoms, largest peak in final ΔF map $+1 \cdot 3$ e \AA^{-3}; atomic scattering factors from International Tables for X-ray Crystallography (1974); programs: Enraf-Nonius SDP (Frenz, 1984), ORTEPII (Johnson, 1976). The structure of the title compound is shown in Fig. 1, and the crystal packing in Fig. 2. Positional parameters and equivalent values of the anisotropic temperature factors are
given in Table 1, bond distances and angles are listed in Table 2.*

Related literature. The title compound is a lowtoxicity antitumor Pt complex (Mitsui, Akamatsu, Koizumi, Tsuchiya, Tomita \& Matsuno, 1987; Morikawa, Honda, Matsumoto, Endoh, Akamatsu, Mitsui \& Koizumi, 1988). For the preparation of the compound see Morikawa, Honda \& Endoh (1987).

[^0]
References

Frenz, B. A. (1984). Enraf-Nonius Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mitsu, H., Akamatsu, K., Koizum, M., Tsuchiya, M., Tomita, E. \& Matsuno, T. (1987). Presented at the 15th Int. Congr. Chemotherapy, Istanbul.
Morikawa, K., Honda, M. \& Endoh, K. (1987). Kokai Tokkyo Koho, 61-129289 (Japanese patent pending).
Morikawa, K., Honda, M., Matsumoto, T., Endoh, K., Akamatsu, K., Mitsui, H. \& Koizumi, M. (1988). Yakugaku Zasshi, 108, 797-800.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1990). C46, 138-140

Bromodicarbonyl($\boldsymbol{\eta}^{\mathbf{3}}$-1-phenylallyl)bis(pyrazole)molybdenum(II)

By F. Albert Cotton* and Rudy L. Luck
Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, TX 77843, USA

(Received 27 June 1989; accepted 31 July 1989)

Abstract

MoBr}\left(\mathrm{C}_{9} \mathrm{H}_{9}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{2}\right], \quad M_{r}=\) 485.19, triclinic, $P \overline{1}, \quad a=8.149(1), \quad b=9.418$ (1), $c=12.917$ (2) $\AA, \quad \alpha=79.91$ (1), $\beta=80.87$ (1), $\quad \gamma=$ $80.23(1)^{\circ}, \quad V=953.4(3) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.690 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71073 \AA, \quad \mu=$ $27.640 \mathrm{~cm}^{-1}, \quad F(000)=476, T=292 \mathrm{~K}, \quad R=0.0689$ for 1776 unique observed reflections. The complex can be considered as octahedral if one assumes that

[^1]0108-2701/90/010138-03\$03.00
the 1-phenylallyl ligand occupies only one coordination site. A pyrazolyl ligand is trans to the 1-phenylallyl ligand and the remaining ligands (one pyrazole, one bromide and two carbon monoxide ligands) can then be described as occupying equatorial positions with the two carbon monoxide ligands cis to each other. Bonds to Mo are $\mathrm{Mo}-\mathrm{Br}=2.756$ (2), Mo-N(pyrazole trans to 1-phenylallyl) $=2 \cdot 227$ (11), Mo- $\mathrm{N}($ pyrazole cis to 1 -phenylallyl $)=2 \cdot 266$ (12), $\mathrm{Mo}-\mathrm{C}(\mathrm{CO}$ trans to Br$)=1.938$ (15), $\mathrm{Mo}-\mathrm{C}(\mathrm{CO}$ cis © 1990 International Union of Crystallography
to Br$)=1.974(15)$, average $\mathrm{Mo}-\mathrm{C}\left(\eta^{3}-1\right.$-phenylallyl) $=2 \cdot 35$ (6) \AA.

Experimental. The title compound, which can probably be synthesized directly by an adaptation of the published procedure (tom Dieck \& Friedel, 1968) for related analogues, was obtained from a reaction using stoichiometric amounts of $[\mathrm{Na}]\left[\mathrm{Mo}(\mathrm{CO})_{4}-\right.$ $\left\{\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2} \mathrm{BEt}_{2}\right\}$] and $\mathrm{PhCHCHCH}{ }_{2} \mathrm{Br}$ in benzene. The addition of hexane to this solution resulted in the formation of small crystals; one of an irregular geometry of dimensions $0.3 \times 0.1 \times 0.1 \mathrm{~mm}$ was mounted on a glass fiber. The formation of the complex may be attributed to the presence of adventitious moisture in the reaction medium since this is known to effect the decomposition of the pyrazolylborate ligand. Cell constants were derived from least-squares refinement based on 25 reflections having $25<2 \theta<32^{\circ}$. Intensity data were collected at variable scan speeds $\left(3-20^{\circ} \min ^{-1}\right)$, which depended on a pre-scan count with a skip option, using the moving-crystal/moving-counter technique with $4 \leq 2 \theta \leq 45^{\circ}(h=0$ to $9, k=-11$ to $11, l=$ -14 to 14) on a Nicolet $P 3 / F$ equivalent diffractometer using graphite-monochromated Mo $K \alpha$ radiation. Three standard reflections ($0 \overline{55}, 12 \overline{7}, \overline{512}$), measured every 100 reflections, showed small ($<0.2 \%$) random variations. Data were corrected for Lorentz and polarization effects, and for absorption effects based on ψ scans using the empirical method of North, Phillips \& Mathews (1968); $T_{\min }=$ $0.8529, T_{\max }=0.9998 .2533$ data were collected and averaged to 1776 unique observed reflections ($F_{o}^{2}>$ $\left.3 \sigma F_{o}^{2}\right) ; R_{\text {merge }}\left(F_{o}\right)=0.083$. Scattering factors, including anomalous dispersion, were taken from International Tables for X-ray Crystallography (1974). All computations were carried out using the SDP/V

Fig. 1. An ORTEP drawing of $\left[\mathrm{MoBr}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHPh}\right)\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{2}$] showing a partial atomic numbering scheme. Thermal ellipsoids have been drawn at the 50% probability level.

Table 1. Positional and equivalent isotropic thermal parameters and their e.s.d.'s for $\left[\mathrm{MoBr}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CH}-\right.\right.$ $\left.\mathrm{CHPh})\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{2}\right]$

The equivalent isotropic displacement parameter is: $\frac{1}{3}\left[a^{2} a^{* 2} B_{11}+\right.$ $b^{2} b^{* 2} B_{22}+c^{2} c^{* 2} B_{33}+2 a b(\cos \gamma) a^{*} b^{*} B_{12}+2 a c(\cos \beta) a^{*} c^{*} B_{13}+$ $\left.2 b c(\cos \alpha) b^{*} c^{*} B_{23}\right]$.

	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{B}_{\text {eq }}\left(\AA^{2}\right)$
Mo	$0.8180(2)$	$0.7638(1)$	$0.3311(1)$	$2.92(2)$
Br	$0.9529(3)$	$0.7823(2)$	$0.5101(1)$	$5.63(5)$
$\mathrm{O}(4)$	$0.704(1)$	$0.713(1)$	$0.1226(9)$	$5.8(3)$
$\mathrm{O}(5)$	$0.674(1)$	$0.473(1)$	$0.4183(9)$	$5.0(3)$
$\mathrm{N}(1)$	$1.059(1)$	$0.619(1)$	$0.2947(9)$	$4.0(3)$
$\mathrm{N}(2)$	$1.190(2)$	$0.592(1)$	$0.351(1)$	$4.8(3)$
$\mathrm{N}(3)$	$0.987(1)$	$0.929(1)$	$0.2490(8)$	$3.3(3)$
$\mathrm{N}(4)$	$1.063(1)$	$1.011(1)$	$0.3001(9)$	$3.9(3)$
$\mathrm{C}(1)$	$0.570(2)$	$0.796(2)$	$0.447(1)$	$5.4(4)$
$\mathrm{C}(2)$	$0.615(2)$	$0.935(2)$	$0.393(1)$	$4.8(4)$
$\mathrm{C}(3)$	$0.594(2)$	$0.966(2)$	$0.284(1)$	$4.0(4)$
$\mathrm{C}(4)$	$0.740(2)$	$0.735(1)$	$0.203(1)$	$3.1(3)$
$\mathrm{C}(5)$	$0.729(2)$	$0.580(2)$	$0.390(1)$	$3.6(3)$
$\mathrm{C}(7)$	$1.109(2)$	$0.545(2)$	$0.213(1)$	$4.4(4)$
$\mathrm{C}(8)$	$1.323(2)$	$0.504(2)$	$0.304(2)$	$5.4(5)$
$\mathrm{C}(9)$	$1.279(2)$	$0.471(2)$	$0.217(1)$	$4.6(4)$
$\mathrm{C}(10)$	$1.154(2)$	$1.100(2)$	$0.228(1)$	$4.5(4)$
$\mathrm{C}(11)$	$1.144(2)$	$1.074(2)$	$0.127(1)$	$4.3(4)$
$\mathrm{C}(12)$	$1.037(2)$	$0.968(2)$	$0.144(1)$	$4.0(4)$
$\mathrm{C}(31)$	$0.635(2)$	$1.099(2)$	$0.210(1)$	$4.7(4)$
$\mathrm{C}(32)$	$0.706(2)$	$1.206(2)$	$0.251(1)$	$4.4(4)$
$\mathrm{C}(33)$	$0.737(2)$	$1.337(2)$	$0.177(1)$	$5.4(5)$
$\mathrm{C}(34)$	$0.704(2)$	$1.357(2)$	$0.073(1)$	$5.3(4)$
$\mathrm{C}(35)$	$0.637(2)$	$1.250(2)$	$0.038(2)$	$7.0(6)$
$\mathrm{C}(36)$	$0.599(2)$	$1.120(2)$	$0.107(1)$	$4.9(4)$

Table 2. Selected bond lengths (\AA) and valence angles (${ }^{\circ}$) for $\left[\mathrm{MoBr}\left(\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHPh}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}(\mathrm{CO})_{2}\right]$

Numbers in parentheses are estimated standard deviations in the least significant digits.

Mo- $-\mathrm{Br} \quad 2.756$ (2)	Mo-C(4)	1.938 (15)	$\mathrm{N}(3)-\mathrm{N}(4) \quad 1.37$ (2)
Mo- $\mathrm{N}(1) \quad 2.227$ (11)	Mo-C(5)	1.974 (15) N	$\mathrm{N}(3)-\mathrm{C}(12) 1.35$ (2)
Mo-N(3) 2.266 (12)	$\mathrm{O}(4)-\mathrm{C}(4)$	$1 \cdot 18$ (2) C	$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.45$ (2)
Mo-C(1) 2.32 (2)	$\mathrm{O}(5)-\mathrm{C}(5)$	$1 \cdot 15$ (2)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.42$ (2)
Mo-C(2) 2.259 (15)	$\mathrm{N}(1)-\mathrm{N}(2)$	1.35 (2)	$\mathrm{C}(3)-\mathrm{C}(31) \quad 1.49$ (2)
Mo-C(3) 2.469 (13)	$\mathrm{N}(1)-\mathrm{C}(7)$	1.34 (2)	
$\mathrm{Br}-\mathrm{Mo}-\mathrm{N}(1)$	83.4 (4)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(3)$	60.4 (5)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{N}(3)$	84.6 (3)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(4)$	102.6 (6)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(1)$	81.4 (5)	$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(5)$	66.6 (6)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(2)$	83.0 (5)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(3)$	34.6 (6)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(3)$	114.5 (4)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(4)$	$102 \cdot 6$ (6)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(4)$	$174 \cdot 4$ (4)	$\mathrm{C}(2)-\mathrm{Mo}-\mathrm{C}(5)$	103.0 (6)
$\mathrm{Br}-\mathrm{Mo}-\mathrm{C}(5)$	95.3 (4)	$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{C}(4)$	71.0 (6)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{N}(3)$	78.8 (4)	$\mathrm{C}(3)-\mathrm{Mo}-\mathrm{C}(5)$	$112 \cdot 1$ (5)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(1)$	$145 \cdot 8$ (5)	$\mathrm{C}(4)-\mathrm{Mo}-\mathrm{C}(5)$	82.9 (6)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(2)$	164.9 (6)	Mo- $\mathrm{N}(1)-\mathrm{N}(2)$	126. (1)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(3)$	153.0 (5)	$\mathrm{Mo}-\mathrm{N}(1)-\mathrm{C}(7)$	129.(1)
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(4)$	91.2 (5)	$\mathrm{N}(4)-\mathrm{N}(3)-\mathrm{C}(12)$) $106 \cdot(1)$
$\mathrm{N}(1)-\mathrm{Mo}-\mathrm{C}(5)$	84.6 (5)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	105. (1)
$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{C}(1)$	129.5 (5)	Mo-N(3)-N(4)	124.7 (7)
$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{C}(2)$	93.5 (5)	Mo- $\mathrm{N}(3)-\mathrm{C}(12)$	129. (1)
$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{C}(3)$	82.7 (4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115. (2)
$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{C}(4)$	95.6 (5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(31)$) $125 \cdot(2)$
$\mathrm{N}(3)-\mathrm{Mo}-\mathrm{C}(5)$	$163 \cdot 4$ (5)	$\mathrm{Mo}-\mathrm{C}(4)-\mathrm{O}(4)$	175. (1)
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	36.8 (6)	$\mathrm{Mo}-\mathrm{C}(5)-\mathrm{O}(5)$	176. (1)

package of programs (B. A. Frenz \& Associates, Inc., 1985). The structure was solved by direct methods and subjected to full-matrix least-squares refinement. All non-H atoms were refined anisotropically. $w R=\left\{\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right] /\left[\sum w\left(F_{o}\right)^{2}\right]\right\}^{1 / 2}$ was minimized, where $w=\sigma^{2}\left(\left|F_{o}\right|\right)^{-1}$; the final R value was $0.0689, w R=0.0959$ and $S=1.933$ for 226 variables. The largest shift/e.s.d. in the final least-squares cycle was 0.07 ; the maximum residual electron density in the difference Fourier map was $1.275 \mathrm{e}^{\AA^{-3}}$.

The molecule and the atomic labeling scheme are shown in Fig. 1. Final positional and equivalent isotropic thermal parameters are shown in Table 1;* some selected bond distances and angles are listed in Table 2.

Related literature. A review of similar complexes has been published by Davis \& Kane-Maguire (1982). Structural work on related complexes has been reported by Graham, Akrigg \& Sheldrick (1976, 1983 , 1985) and by Graham \& Fenn $(1969,1970)$.

These studies are supported by the National Science Foundation.

[^2]
References

B. A. Frenz \& Associates, Inc. (1985). SDP/V Structure Determination Package. College Station, Texas, USA.
Davis, R. \& Kane-Maguire, L. A. P. (1982). Comprehensive Organometallic Chemistry, edited by G. Wilkinson, F. G. A. Stone \& E. W. Abel, Vol. 3, pp. 1156-1159. Oxford: Pergamon Press.
Dieck, H. tom \& Friedel, H. (1968). J. Organomet Chem. 14, 375-385.
Graham, A. J., Akrigg, D. \& Sheldrick, B. (1976). Cryst. Struct. Commun. 5, 891-898.
Graham, A. J., Akrigg, D. \& Sheldrick, B. (1983). Acta Cryst. C39, 192-194.
Graham, A. J., Akrigg, D. \& Sheldrick, B. (1985). Acta Cryst. C41, 995-996.
Graham, A. J. \& Fenn, R. H. (1969). J. Organomet. Chem. 17, 405-422.
Graham, A. J. \& Fenn, R. H. (1970). J. Organomet. Chem. 25, 173-191.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1990). C46, 140-142

Structure of $\left(\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}_{2} \mathrm{~S}_{2}\right)^{\mathbf{2 +}} .2 \mathrm{SbF}_{6}^{-} .2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$

By S. W. Liblong and R. T. Oakley
Guelph-Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, Department of Chemistry and Biochemistry, University of Guelph, Ontario, Canada N1G 2W1

and A. W. Cordes

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
(Received 14 June 1989; accepted 28 July 1989)

Abstract. $\quad p$-Di(1,2,3,5-dithiadiazolium-4-yl)benzene hexafluoroantimonate benzonitrile solvate, $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{~S}_{4}^{2+} .2 \mathrm{SbF}_{6}^{-} .2 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}, \quad M_{r}=962 \cdot 1$, monoclinic, $C 2 / c, \quad a=11.578$ (4),$\quad b=22 \cdot 122$ (10), $\quad c=$ 13.672 (6) $\AA, \beta=110.31$ (3$)^{\circ}, V=3284$ (5) $\AA^{3}, Z=$ 4, $D_{x}=1.95 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $19.9 \mathrm{~cm}^{-1}, F(000)=1848, T=293 \mathrm{~K}, R=0.046$ for 1374 reflections with $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. The cation is located on a crystallographic center of symmetry and two independent SbF_{6}^{-}anions are each located on twofold rotation axes. One of the anions is disordered. In the cation the terminal $\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{C}$ rings are twisted 15.8° with respect to the phenylene ring. The S-S distance is 2.009 (4) \AA and the average $\mathrm{S}-\mathrm{N}$, and $\mathrm{C}-\mathrm{N}$ distances are 1.577 (9) and 1.34 (1) \AA, respectively.

Experimental. Title salt (I) prepared by metathesis of $\left[\left(\mathrm{S}_{2} \mathrm{~N}_{2} \mathrm{C}\right) \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CN}_{2} \mathrm{~S}_{2}\right)\right]^{2+} .2 \mathrm{Cl}^{-}$with NOSbF_{6} in

0108-2701/90/010140-03\$03.00

PhCN . The dichloride salt itself was prepared by the reaction of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{~N}\left(\mathrm{Me}_{3} \mathrm{SiN}\right) \mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{C}\left(\mathrm{NSiMe}_{3}\right) \mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Boere, Oakley \& Reed, 1987) with excess SCl_{2}. Data crystal obtained by slow cooling of a benzonitrile solution. Yellow airsensitive crystal approximately $0.40 \times 0.40 \times$ 0.40 mm was embedded in wax in a glass capillary. Intensities measured with an Enraf-Nonius CAD-4 diffractometer using $\omega-2 \theta$ scans of $8^{\circ} \mathrm{min}^{-1}$ in θ. Unit cell determined from least-squares analysis of angle data for 25 reflections with $17<2 \theta<20^{\circ}$. Absorption correction based on ψ scans varied from

© 1990 International Union of Crystallography

[^0]: * Lists of anisotropic thermal parameters, H -atom coordinates, torsion angles, least-squares planes, r.m.s. amplitudes of thermal vibration and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52209 (17 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * To whom correspondence should be addressed.

[^2]: * Lists of structure factors, anisotropic thermal parameters, and complete intramolecular bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52161 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

